Anal. Calcd. for C₆H₁₆SiBr: Br, 40.95; neut. equiv., 195. Found: Br, 40.93; neut. equiv., 196.

An ether solution of α -chloroethyldiethylaminosilane, 24 g. (0.145 mole) was treated with dry hydrogen bromide to give 12 g. (0.052 mole) of α -chloroethyldiethylbromosilane, b. p. 194-196°, n^{30} p 1.4762, a yield of 26%. A product of higher purity was obtained in the reaction with hydrobromic-sulfuric acid mixture.

Anal. Calcd. for C₆H₁₁SiClBr: Br, 34.81; neut. equiv., 230. Found: Br, 33.99; neut. equiv., 234.

E. With Hydrobromic-Sulfuric Acid Mixture.—In a one-liter three-necked flask equipped with reflux condenser, mercury-sealed stirrer, and dropping funnel, there was placed 300 cc. of 48% hydrobromic acid. This was cooled in an ice-bath and 200 cc. of concentrated sulfuric acid was added. To the mixture there was then added through the dropping funnel 41 g. (0.31 mole) of triethylaminosilane. After stirring the reaction mixture for twenty minutes, the resulting two layers were separated and the organic layer dried over sodium sulfate. Fractionation gave 33.5 g. (0.17 mole) of triethylbromosilane, b. p. 78-79° (45 mm.), n^{30} D 1.4561, Br, 40.8% (calcd. 40.95%), a yield of 55%.

 α -Chloroethyldiethylaminosilane, 52 g. (0.31 mole), was treated with hydrobromic-sulfuric acid by a procedure similar to that used for triethylaminosilane. Distillation of the product gave 58.5 g. (0.255 mole) of α -chloroethyldiethylbromosilane, b. p. 105-106° (46 mm.), n^{20} D 1.4784, d^{20} 1.2661, Br, 34.8% (calcd. 34.81%), a yield of 81%.

DEPARTMENT OF CHEMISTRY

THE PENNSYLVANIA STATE COLLEGE

STATE COLLEGE, PENNSYLVANIA RECEIVED MAY 17, 1947

Conductivities of Aqueous Solutions of Dodecylammonium Chloride

BY A. W. RALSTON AND D. N. EGGENBERGER

We are currently engaged in a study of the effects of inorganic electrolytes and of various or-

values are somewhat lower than those which we have previously reported.^{1.2} We are of the opinion that the dodecylammonium chloride which was used in our earlier work contained traces of impurities, since our present values have been reproduced with several quite pure samples of this amine salt prepared by different investigators. The values herein reported, when plotted against the square root of the volume normality, $\sqrt{N_v}$, show a decidedly less steep slope within the first range, although the concentrations of amine salt at the critical points for micelle formation are in agreement with those reported previously.

The values of the equivalent conductivities of aqueous solutions of dodecylammonium chloride at various temperatures are shown in Table I.

Experimental

Preparation of Dodecylammonium Chloride.—Commercially distilled dodecylamine was fractionated through a Stedman packed column and the fraction boiling at 111.5° at 4 mm. retained. This fraction melted at 28.30°. The amine (200 g.) was dissolved in benzene (2 liters) and treated with dry hydrogen chloride. Upon cooling, crystals of dodecylammonium chloride precipitated. The crystals were removed by filtration and crystallized three times from benzene. The sample was analyzed by a previously described procedure.⁴ (*Anal.* Calcd. for C₁₂H₂₃NH₂, 83.54; Cl, 16.00. Found: C₁₂H₂₅NH₂, 83.84; Cl, 16.06).

Conductivity Determinations.—Conductivities were determined in the manner and with the equipment previously described.¹

(1) Ralston, Hoerr and Hoffman, THIS JOURNAL, 64, 97 (1942).

(2) Ralston and Hoerr, ibid., 64, 772 (1942).

(3) Raiston and Hoerr, Ind. Eng. Chem., Anal. Ed., 16, 459 (1944).

RESEARCH LABORATORY OF ARMOUR AND COMPANY CHICAGO, ILLINOIS RECEIVED JULY 14, 1947

Equivalent Conductivities of Aqueous Solutions of Dodecylammonium Chloride											
<i>N</i> ▼ 20°	Δ	<i>N</i> _{▼ 25°}	A	Nv 30°	Δ.	<i>N</i> ▼ 40°	Δ.	N. ₅50°	Δ.	Nv 60°	Δ.
0.000507	87.6	0.000777	96.0	0.000985	106.4	0.000801	127.7	0.000968	148.6	0.000905	172.1
,00127	86.5	.00177	95.2	.00179	105.7	,00186	126.0	.00212	147.4	.0 0194	169.5
.00284	85.0	.00398	93.1	.00335	104.8	,00405	124.0	.00445	145.5	.00 466	166.7
.00402	84.4	.01003	91.3	,00384	104.4	,00728	123.0	.00820	142.4	.01433	160.6
.00635	83.0	.01025	90.9	.00608	103.5	.00806	121.5	.00933	141.8	.0180	155.0
.00934	81.7	.0156	86.6	.00842	102.4	.01455	119.7	.01417	140.7	.0248	130.0
.01025	81.4	.0168	83.1	.01137	101.5	.0177	107.2	.0181	128.6	.0439	96.0
.0170	74.1	.0172	80.7	.01354	100.7	.0207	96.5	.0223	112.5	.0729	79.7
.0181	70.3	.0196	73.5	.0150	98.9	.0480	61.8	.0240	109.0	. 1345	70.8
,0208	64.1	.0223	68.4	.0173	90.5	.0796	52.1	.0423	80.5		
.0265	54.3	.0437	45.7	.0226	75.4	. 1353	47.2	.0682	67.0		
,0484	38.1	.0769	36.3	.0235	72.9			.1383	58.4		
.0782	31.1	.1371	31.7	.0384	54.9						
. 1397	26.8			.0622	43.7						
				.1008	38.7						
				.1493	36.4						

TABLE I

ganic compounds upon the electrical behavior of solutions of cationic colloidal electrolytes. During the course of this investigation we have redetermined the equivalent conductivities of aqueous solutions of dodecylammonium chloride at various temperatures and have found that the

Trimethylgermanium Chloride

BY EUGENE G. ROCHOW¹

The preparation of methylgermanium trichloride and dimethylgermanium dichloride by the (1) Research Laboratory, General Electric Company.